Rhythms of the collective brain

I have recently published a new paper where we model social coordination in self-organized crowds social media, using data from the 15M movement in Spain:

 

paper-complexity

Abstract

Crowd behaviour challenges our fundamental understanding of social phenomena. Involving complex interactions between multiple temporal and spatial scales of activity, its governing mechanisms defy conventional analysis. Using 1.5 million Twitter messages from the 15M movement in Spain as an example of multitudinous self-organization, we describe the coordination dynamics of the system measuring phase-locking statistics at different frequencies using wavelet transforms, identifying 8 frequency bands of entrained oscillations between 15 geographical nodes. Then we apply maximum entropy inference methods to describe Ising models capturing transient synchrony in our data at each frequency band. The models show that all frequency bands of the system operate near critical points of their parameter space and while fast frequencies present only a few metastable states displaying all-or-none synchronization, slow frequencies present a diversity of metastable states of partial synchronization. Furthermore, describing the state at each frequency band using the energy of the corresponding Ising model, we compute transfer entropy to characterize cross-scale interactions between frequency bands, showing a cascade of upward information flows in which each frequency band influences its contiguous slower bands and downward information flows where slow frequencies modulate distant fast frequencies.

Advertisements

About maguilera0

Miguel Aguilera is a Postdoctoral Research Fellow at the IAS Research Center for Life, Mind and Society at the University of the Basque Country. He has been a visiting researcher at the Cognitive Science Program at Indiana University and the Ikegami Lab in the Department of General Systems Studies at the University of Tokyo, and a postdoctoral fellow at the University of the University of Zaragoza and the University of the Balearic Islands. His research focuses on autonomy in biological and social systems from an interdisciplinary perspective, integrating insights from cognitive science, theoretical neuroscience, computational modeling, adaptive behaviour, and complex systems. It combines nonlinear and dynamical models, evolutionary algorithms, and mathematical analysis from dynamical systems, network and information theory, to generate and understand situated and embodied models of agency in the realms of artificial life and evolutionary robotics, computational neuroscience, collective intelligence practices and socio-technical systems.
This entry was posted in Uncategorized and tagged , , , , , . Bookmark the permalink.